
JDK (Java Development Kit) 

• The JDK is a software development environment used to develop Java applications and applets. 

• It physically exists and includes the JRE (Java Runtime Environment) along with development tools. 

• It is an implementation of one of the Java platforms: 

o Java SE (Standard Edition) 

o Java EE (Enterprise Edition) 

o Java ME (Micro Edition) 

o JavaFX 

Components of JDK: 

• JVM + JDK = Other resources, which include: 

o Interpreter/Loader (java) 

o Compiler (javac) 

o Archiver (jar) 

o Document generator (Javadoc), etc. 

 
JRE (Java Runtime Environment) 

• JRE is a set of software tools used for developing Java applications. 

• Provides the runtime environment for Java programs. 

• Physically exists → it is the implementation of JVM. 

• Consists of: 

o Libraries 

o Other files used by the JVM at runtime. 

 
JVM (Java Virtual Machine) 

• JVM is an abstract machine → it doesn’t physically exist. 

• Provides a runtime environment for executing Java bytecode. 

• Available for many hardware & software platforms. 

• JDK, JRE, and JVM are platform-dependent because of differences in configuration. 

3 Notions of JVM 

1. Specification 

2. Implementation 

3. Instance 

Main Tasks of JVM 

• Loads code 

• Executes code 

• Verifies code 

• Provides runtime environment 

 

 

 
Java File Processing 

1. Compilation vs Execution 

• Compilation → .java file → .class file 

• Execution → .class file runs inside the JVM (which is custom-built for every OS). 

• Java achieves platform independence because .class (bytecode) runs on JVM, not directly on OS. 

 
 



2. Compilation Process (7 Steps) 

Input: .java file → Output: .class file 

i) Parse 

• Java compiler reads the .java file. 

• Breaks code into tokens and builds an Abstract Syntax Tree (AST) to represent the code. 

ii) Enter 

• Compiler records information about classes, methods, and variables in a symbol table. 

• Works like a map for tracking definitions. 

iii) Process Annotations 

• If annotations exist (e.g., @Override, @Deprecated), the compiler processes them when needed. 

iv) Attribute 

• Compiler checks and verifies: 

o Types 

o Naming conventions 

o Other semantic rules 

v) Flow 

• Performs data flow analysis: 

o Ensures variables are assigned before use. 

o Checks which parts of the code can actually be executed. 

vi) Desugar 

• Converts advanced syntax into simpler Java code. 

Examples: 

o for-each loops → converted into simple for loops. 

o Lambdas → converted into standard method calls. 

vii) Generate 

• Generates .class file (bytecode) → which JVM can execute. 

 
Execution in Java 

• The .class files generated are independent of machine and OS, allowing them to run on any system. 

• Execution process: 

1. The main class file (with main method) is passed to JVM. 

2. It goes through: 

▪ ClassLoader 

▪ Bytecode Verifier 

▪ JIT (Just-In-Time) Compiler 

 
ClassLoader 

• The main class is loaded into memory. 

• All other classes referenced through the main class are loaded via the ClassLoader. 

• The ClassLoader itself is an object that creates a flat namespace. 

LoadClass Function Prototype 

Class r = loadClass(String className, boolean resolveIt); 

• className → Name of the class to be loaded. 

• resolveIt → Flag to decide whether the referenced class should be loaded or not. 

 
Types of ClassLoader 

1. Primordial ClassLoader 

• Also called Bootstrap ClassLoader. 

• Loads core Java classes from the JDK (e.g., java.lang.String, java.util.List). 

• It is embedded into all JVMs and acts as the default ClassLoader. 

• Example: java.lang.Object 

 

Types of ClassLoader 



1. Non-Primordial (User-defined) ClassLoader 

• A user-defined ClassLoader that can be coded to customize the class loading process. 

• It is defined by the programmer and preferred over the default loader when custom behavior is required. 

 
Bytecode Verifier 

• Inspects the loaded class to ensure instructions do not perform harmful operations. 

• Performs several checks: 

o Variables are initialized before use. 

o Method calls match the type of object references. 

o Rules for accessing private data & methods are followed. 

o Local variable access stays within the runtime limits. 

o The runtime stack does not overflow. 

o If any check fails → class is not allowed to be loaded. 

 
Just-In-Time (JIT) Compiler 

• Converts loaded bytecode into machine code. 

• Bytecode is understandable by JVM, but not directly executable by the processor → JIT converts it into 

native machine code. 

• Native code can then run directly on the computer’s processor. 

• Ensures faster program execution because conversion happens while the program is running. 

• Triggered only during execution, not beforehand. 

 


