JDK (Java Development Kit)
e The JDK is a software development environment used to develop Java applications and applets.
e It physically exists and includes the JRE (Java Runtime Environment) along with development tools.
e Itis an implementation of one of the Java platforms:
o Java SE (Standard Edition)
o Java EE (Enterprise Edition)
o Java ME (Micro Edition)
o JavaFX
Components of JDK:
e JVM + JDK = Other resources, which include:
Interpreter/Loader (java)
Compiler (javac)
Archiver (jar)
Document generator (Javadoc), etc.

O O O O

JRE (Java Runtime Environment)
e JRE is a set of software tools used for developing Java applications.
e Provides the runtime environment for Java programs.
e Physically exists - it is the implementation of JVM.
e Consists of:
o Libraries
o Other files used by the JVM at runtime.

JVM (Java Virtual Machine)
e JVM is an abstract machine - it doesn’t physically exist.
e Provides a runtime environment for executing Java bytecode.
e Available for many hardware & software platforms.
e DK, JRE, and JVM are platform-dependent because of differences in configuration.
3 Notions of JVM
1. Specification
2. Implementation
3. Instance
Main Tasks of JVM
e Loads code
e Executes code
e Verifies code
e Provides runtime environment

ST OF LIBRARIES
Eg « FLjav @dg
IUM DEVEL D FRENT
TEHOLS Eg: jawac
o b

jwa, wte
OTHIE FILES

JRE
JOK

Java File Processing
1. Compilation vs Execution
e Compilation - .java file - .class file
e Execution - .class file runs inside the JVM (which is custom-built for every OS).
e Java achieves platform independence because .class (bytecode) runs on JVM, not directly on OS.

2. Compilation Process (7 Steps)
Input: .java file = Output: .class file
i) Parse
e Java compiler reads the .java file.
e Breaks code into tokens and builds an Abstract Syntax Tree (AST) to represent the code.
i) Enter
e Compiler records information about classes, methods, and variables in a symbol table.
o Works like a map for tracking definitions.
iii) Process Annotations
e If annotations exist (e.g., @Override, @Deprecated), the compiler processes them when needed.
iv) Attribute
e Compiler checks and verifies:
o Types
o Naming conventions
o Other semantic rules
v) Flow
e Performs data flow analysis:
o Ensures variables are assigned before use.
o Checks which parts of the code can actually be executed.

vi) Desugar
e Converts advanced syntax into simpler Java code.
Examples:

o for-each loops = converted into simple for loops.
o Lambdas - converted into standard method calls.
vii) Generate
e Generates .class file (bytecode) > which JVM can execute.

Execution in Java
e The .class files generated are independent of machine and OS, allowing them to run on any system.
e Execution process:
1. The main class file (with main method) is passed to JVM.
2. It goes through:
* ClassLoader
= Bytecode Verifier
* JIT (Just-In-Time) Compiler

ClassLoader
e The main class is loaded into memory.
e All other classes referenced through the main class are loaded via the ClassLoader.
e The ClassLoader itself is an object that creates a flat namespace.
LoadClass Function Prototype
Class r = loadClass(String className, boolean resolvelt);
e className - Name of the class to be loaded.
e resolvelt - Flag to decide whether the referenced class should be loaded or not.

Types of ClassLoader
1. Primordial ClassLoader
e Also called Bootstrap ClassLoader.
e Loads core Java classes from the JDK (e.g., java.lang.String, java.util.List).
e Itis embedded into all JVMs and acts as the default ClassLoader.
e Example: java.lang.Object

Types of ClassLoader

1. Non-Primordial (User-defined) ClassLoader
A user-defined ClassLoader that can be coded to customize the class loading process.
It is defined by the programmer and preferred over the default loader when custom behavior is required.

Bytecode Verifier
Inspects the loaded class to ensure instructions do not perform harmful operations.
Performs several checks:

o

o O O O O

Variables are initialized before use.

Method calls match the type of object references.

Rules for accessing private data & methods are followed.
Local variable access stays within the runtime limits.

The runtime stack does not overflow.

If any check fails = class is not allowed to be loaded.

Just-In-Time (JIT) Compiler

Converts loaded bytecode into machine code.

Bytecode is understandable by JVM, but not directly executable by the processor = JIT converts it into
native machine code.

Native code can then run directly on the computer’s processor.
Ensures faster program execution because conversion happens while the program is running.
Triggered only during execution, not beforehand.

